Updates and a Look Towards First Results: Beam and Osc Groups

Bryce Littlejohn on behalf of Osc and Beam Coordinators

March 6, 2014

Oscillation Group: The Long Game

- Oscillation analysis: Remake this plot for MicroBooNE
 - Make it in a bunch of different ways
- This plot is a WAYS away: need ~3 years' data to make this...
- What can we present in the short term to lay the groundwork for a solid nue appearance analysis?

The Short Game

- In near term, Osc Group will lead effort to understand showers
 - Develop highly efficient automated shower reconstruction: >90%
 - Determine selection efficiencies (>90%) and mis-id rates (<1% μ , <10% γ)
 - Ensure data and Monte Carlo showers have similar characteristics
 - Demonstrate level of gamma background reduction with data
 - If possible, demonstrate characteristics of e- while staying 'blind' to excess
- We'd like to aim for a paper demonstrating these efforts:
- "Shower reconstruction in the uBooNE LArTPC"

Prepare for this in the first year of MicroBooNE running

The Short(er) Game

- This work takes for granted some preceding accomplishments:
 - Commissioning
 - Cosmic rejection
 - Charge, drift, and energy calibrations
- See Jonathan's next talk: R&D and Calibrations Groups
- Because of this, osc work is less 'first-plots' type results, and more 'first year' type of results

Near-Term Efforts: MC

- In near term, Osc Group will lead effort to understand showers
 - Develop efficient automated shower reconstruction: >90%; good φ, E res.
 - Determine selection efficiencies (>90%) and mis-id rates (<1% μ , <10% γ)
- These efforts should be attacked in the near term with MC
- A major focus of upcoming Yale workshop

Identify metrics for separating tracks/ showers

Make these plots for showers/tracks in 3D for GENIE events

Plots could appear in shower paper

Near-Term Efforts: Data/MC Comparison

- In near term, Osc Group will lead effort to understand showers
 - Ensure data, MC showers have similar shower/track characteristics
 - Necessary for confidence in applying MC selection, mis-id efficiencies to data
- We will have lots of data in short-term, shower- and track-like

- Compare track-shower discriminating variables for data, MC
- Data available for use is limited by chosen blinding plan
- Distributions somewhat coupled with cross-sections...

Process	BN	√B, 6.6e2	.0 POT	No. Events
110003	ν_{μ} Er	vents (By Final	State Topology)	Tio. Events
CC Inclusiv	-			88,098
$\mathrm{CC} \geq \!\! 1\pi^0$	$\geq \! 1 \pi^0 \qquad \qquad \nu_\mu N \to {\rm nucleons} + \geq 1 \pi^0$			
NC Inclusive	е			33,000
$NC \ge 1\pi^0$		$\nu_{\mu}N \rightarrow \text{nucleo}$	ons $+ \ge 1\pi^0$	6,657
30	C	Corey, DocDB	2876	2
Events		BNB	NuMI	=
	Total	145k	60k	-
ν_{μ}	CCQE	68k	25k	
N	CCQE IC π^0	8k	3k	Assur
		•		– – – – – – – – – – – – – – – – – – –

0.4k

 6×10^{20}

Doug, DocDB 3216

 ν_e CCQE

POT

Assume this plot is for GENIE-based beam and dirt MC Also do for shower width v. length, off-axis charge, etc.

Thursday, March 6, 14

1.2k

 8×20^{20}

Near-Term Efforts: Data/MC Comparison

- In near term, Osc Group will lead effort to understand showers
 - Demonstrate level of gamma background reduction with data
- We will have some data to work with here:
 - Cleanly separated two-shower events from NCPi0, CCmu+Pi0
 - Will have lots of cosmic and beam Michels (applicable to bnb e-?)
 - If possible, we can also look at e- events from NUMI beam

Near-Term Efforts: Energy/Direction

- In near term, Osc Group will lead effort to understand showers
 - Demonstrate shower reconstruction resolution
- Pi0 mass peak?

Shower Paper

- If we include this information in a nearer-term paper, we can present groundwork of nue analysis to the community:
 - "We can automatically reconstruct showers."
 - "Here are our reconstruction efficiencies."
 - "Our MC simulations model actual uB showers very well."
 - "e/γ separation is clearly demonstrated in first data."
 - "Waiting for full 3 year dataset to give final nue result."
- The kind of plots we'd put this paper are demonstrated in previous slides
- No breaking of nue-appearance blinding is necessary to accomplish this demonstration

Beam Updates

RWM

- Got 2 AFL300 units from Mike Kucera (convert ttl at MiniBooNE and send it over fibre to LarTF)
- Reserved fibre, need to install

Plots

 POT performance plots updated daily on Beam monitoring page (http://wwwmicroboone.fnal.gov/at_work/bea m/beammonitoring.html)

Beam Group MC Goals

Goal			NUMI
updated CC, NC events and tables			
Dirt:	scatter plot of vertex position of particles producing activity in TPC		
z distributions of dirt events appearing as different event types in TPC			
	position on gSimple window for v producing TPC event		

- NUMI fluxes from Doug Davis on the way
- New Dirt MC delivery this week
 - Create these plots during Yale workshop

Tia & Zarko

Beam Group First Result Goals

- # Protons on Target
 - accelerator division
- uB activity corresponding to beam arrival
 - need rough tag of a "neutrino event"
 - need precuts to remove cosmics
 - these will emerge from Yale workshop
- # v event / # protons on target
 - from above two plots
- # dirt muons entering detector

Tia & Zarko